Prefer Your Language

Search This Blog

How to Reverse Multi Block in an Array using Shared memory



Template for Tutorial problem number 4

// includes, system
#include <stdio.h>
#include <assert.h>

// Simple utility function to check for CUDA runtime errors
void checkCUDAError(const char* msg);

// Part 2 of 2: implement the fast kernel using shared memory
__global__ void reverseArrayBlock(int *d_out, int *d_in)
{
    extern __shared__ int s_data[];

    // Load one element per thread from device memory and store it
    // *in reversed order* into temporary shared memory
    ???

    // Block until all threads in the block have written their data to shared mem
    ???

    // write the data from shared memory in forward order,
    // but to the reversed block offset as before
    ???
}

////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main( int argc, char** argv)
{
    // pointer for host memory and size
    int *h_a;
    int dimA = 256 * 1024; // 256K elements (1MB total)

    // pointer for device memory
    int *d_b, *d_a;

    // define grid and block size
    int numThreadsPerBlock = 256;

    // Compute number of blocks needed based on array size and desired block size
    int numBlocks = dimA / numThreadsPerBlock;

    // Part 1 of 2: Compute the number of bytes of shared memory needed
    // This is used in the kernel invocation below
    int sharedMemSize = ???;

    // allocate host and device memory
    size_t memSize = numBlocks * numThreadsPerBlock * sizeof(int);
    h_a = (int *) malloc(memSize);
    cudaMalloc( (void **) &d_a, memSize );
    cudaMalloc( (void **) &d_b, memSize );

    // Initialize input array on host
    for (int i = 0; i < dimA; ++i)
    {
        h_a[i] = i;
    }

    // Copy host array to device array
    cudaMemcpy( d_a, h_a, memSize, cudaMemcpyHostToDevice );

    // launch kernel
    dim3 dimGrid(numBlocks);
    dim3 dimBlock(numThreadsPerBlock);
    reverseArrayBlock<<< dimGrid, dimBlock, sharedMemSize >>>( d_b, d_a );

    // block until the device has completed
    cudaThreadSynchronize();

    // check if kernel execution generated an error
    // Check for any CUDA errors
    checkCUDAError("kernel invocation");

    // device to host copy
    cudaMemcpy( h_a, d_b, memSize, cudaMemcpyDeviceToHost );

    // Check for any CUDA errors
    checkCUDAError("memcpy");

    // verify the data returned to the host is correct
    for (int i = 0; i < dimA; i++)
    {
        assert(h_a[i] == dimA - 1 - i );
    }

    // free device memory
    cudaFree(d_a);
    cudaFree(d_b);

    // free host memory
    free(h_a);

    // If the program makes it this far, then the results are correct and
    // there are no run-time errors.  Good work!
    printf("Correct!\n");

    return 0;
}

void checkCUDAError(const char *msg)
{
    cudaError_t err = cudaGetLastError();
    if( cudaSuccess != err)
    {
        fprintf(stderr, "Cuda error: %s: %s.\n", msg, cudaGetErrorString( err) );
        exit(EXIT_FAILURE);
    }
}



Feel free to comment...

 References


 Contact us….. Click here

1 comment:

Help us to improve our quality and become contributor to our blog

Become a contributor to this blog. Click on contact us tab
Blogger Template by Clairvo