Pages

Saturday, 2 February 2013

CUDA Array in CUDA | How to use CUDA Array in CUDA | CUDA ARRAY


CUDA Array in CUDA | How to use CUDA Array in CUDA

In the previous articles [this, this] we have discussed texturememory and cudaChannelFormatDesc () in CUDA. In this article we learn how to use CUDA Array in CUDA programming, which will be very useful when you start using Texture memory and Surface memory (will be discusses in future article).

Before start discussion please learn how to use cudaChannelFormatDesc ()  in CUDA, which also introduce CUDA Array.
If you walked from use cudaChannelFormatDesc ()   in CUDA than read future otherwise go through given link.

Let’s start our discussion over CUDA Array

CUDA arrays are similar like an array in CUDA but specially they are memory areas dedicate to textures. They are read-only for the GPU (and are only accessible through texture fetches), and can be written to by the CPU using cudaMemcpyToArray ().

In essence, CUDA arrays are opaque memory layouts optimized for texture fetching. They are one-dimensional, two-dimensional, or three-dimensional and composed of elements, each of which has 1, 2 or 4 components that may be signed or unsigned 8-, 16- or 32-bit integers, 16-bit floats, or 32-bit floats. CUDA arrays are only readable by kernels through texture fetching and may only be bound to texture references with the same number of packed components.

Allocating a CUDA array requires the specification of a channel format description matching the one used by the texture that needs to be mapped on it.

Note:

Devices with capability 2.0 or higher can write to CUDA arrays using surfaces, a read-write feature similar to textures. Table F-2   listed about the CUDA Array in terms of device compute capability.

Please be familiar with the following functions;



Allocation of CUDA Array in CUDA

For allocation of CUDA Array use cudaMallocArray ( )

texture<> someTex;

cudaArray *dArray;

cudaMallocArray( &dArray, &someTex.channelDesc, width, height);


Using CUDA Array in CUDA

To use CUDA Array in CUDA we use cudaMemcpyToArray () and cudaBindTextureToArray


cudaMemcpyToArray ( dArray, wOffset, hOffset, source, size, cudaMemcpyHostToDevice);

cudaBindTextureToArray ( someTex, dArray );

Copies size bytes from the memory area pointed by Source to the CUDA Array dArray starting at upper left corner (wOffset, hOffset)


Releasing CUDA Array memory in CUDA
For releasing the memory pointer by CUDA Array we use cudaFreeArray ()

cudaFreeArray ( dArray );



Complete Example of CUDA Array and cudaChannelFormatDesc () 


#include "HEADER.h"
#include "ERROR.h"

// 2D float texture
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef;


// Simple transformation kernel
__global__ void transformKernel(float* output, int width, int height, float theta)
{
      // Calculate normalized texture coordinates
      unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
     
      unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
     
      float u = x / (float)width;
     
      float v = y / (float)height;
     
      // Transform coordinates
      u -= 0.5f;
     
      v -= 0.5f; 
     
      float tu = u * cosf(theta) - v * sinf(theta) + 0.5f ;
     
      float tv = v * cosf(theta) + u * sinf(theta) + 0.5f ;
     
      // Read from texture and write to global memory
      output[y * width + x] = tex2D(texRef, tu, tv);
}

// Host code
int main()
{
      int width = 3 , height = 3 ;

      float h_data[3][3] ;
      for ( int i =0 ; i<3 ; i++ )
                  for ( int j = 0 ; j<3; j++ )
                              h_data [i][j] = i*j ;

      int size = width*height*sizeof(float) ;
     
      // Allocate CUDA array in device memory
      cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,
                                             cudaChannelFormatKindFloat );
     
      cudaArray* cuArray;
     
      cudaMallocArray(&cuArray, &channelDesc, width, height);
     
      // Copy to device memory some data located at address h_data
      // in host memory
      cudaMemcpyToArray(cuArray, 0, 0, h_data, size, cudaMemcpyHostToDevice);
     
      // Set texture parameters
      texRef.addressMode[0] = cudaAddressModeWrap;
      texRef.addressMode[1] = cudaAddressModeWrap;
      texRef.filterMode = cudaFilterModeLinear;
      texRef.normalized = true;
     
      // Bind the array to the texture reference
      cudaBindTextureToArray(texRef, cuArray, channelDesc);
     
      // Allocate result of transformation in device memory
      float* output;
     
      cudaMalloc(&output, size );
     
      // Invoke kernel
      dim3 dimBlock(16, 16);
      dim3 dimGrid( (width + dimBlock.x - 1) / dimBlock.x,
                       (height + dimBlock.y - 1) / dimBlock.y );
     
      transformKernel<<<dimGrid, dimBlock>>>(output, width, height, 90 );
     
      printf ("\n Original array \n");
      for ( int i =0 ; i<3 ; i++ )
      {
            for ( int j = 0 ; j<3; j++ )
                              printf ("%f ", h_data [i][j] );
           
            printf ("\n");
      }

      CUDA_CALL ( cudaMemcpy (h_data , output, size, cudaMemcpyDeviceToHost ) );

      printf ("\n After operation \n ");
      for ( int i =0 ; i<3 ; i++ )
      {
            for ( int j = 0 ; j<3; j++ )
                              printf ("%f ", h_data [i][j] );
           
            printf ("\n");
      }

      system ("pause");
      // Free device memory
      cudaFreeArray(cuArray);
      cudaFree(output);
      return 0;
}


Sample output
Fig.


I hope you must like this article and have learned CUDA Array and how to use CUDA Array in CUDA.

Got Questions?
Feel free to ask me any question because I'd be happy to walk you through step by step! 
Want to Contact us? Click here



12 comments:

  1. THANKS FOR SHARING SUCH A GREAT INFORMATION.. IT REALLY HELPFUL TO ME..I ALWAYS SEARCH TO READ THE QUALITY CONTENT AND FINALLY I FOUND THIS IN YOU POST. KEEP IT UP!
    섯다

    ReplyDelete
  2. LOVE TO READ YOUR BLOG! THANKS FOR POSTING SOME VALUABLE POST.
    토토사이트

    ReplyDelete

Help us to improve our quality and become contributor to our blog